手机浏览器扫描二维码访问
屋子里。
看着一脸懊恼的小牛,徐云的心中却不由充满了感慨:
虽然这位的人品实在拉胯,但他的脑子实在是太顶了!
看看他提到的内容吧:
微积分就不说了,还提到了法向量的概念、势能的概念、净力矩的概念以及小形变的假设的假设。
以上这几个概念有一个算一个,正式被以理论公开,最早都要在18o7年之后。
这种15o年到2oo年的思维跨度...敢问谁能做到?
诚然。
胡克提出来的问题其实很简单,简单到徐云第一时间想到的解法就接近了二十种,最快捷的方法只要立个非笛卡尔坐标系上个共变导数就能解决。
但别忘了,徐云的知识是通过后世学习得到的,那时候的基础理论已经被归纳的相当完善了。
就像掌握了可控核聚变的时代,闭着眼睛都能搞出个2oocc的动机。
但小牛呢?
他属于在钻木取火的时代,目光却看到了内燃机的十六烷值计算式那么离谱!
想到这,徐云心中莫名有些想笑:
他曾经写过一本小说,结果别说牛顿了,连麦克斯韦都被一些评论diss成了‘查了一下,不过一个方程组而已’。
随后他深吸一口气,将心思转回了现场:
“牛顿先生,您的这个思路我非常认可,但是需要用到的未知数学工具有些多,以目前数学界的研究进度似乎有点乏力......”
小牛点点头,大方的承认了这一点:
“没错,但除此以外,就必须要用到你说的韩立展开了。”
说完小牛继续低下头,飞快的又列出了一行式子:
V(r)=V(re)+V’(re)(r-e)+[V’’(re)2!](r-re)^2+[V’’’(re)3!](r-re)^3......
接着小牛在这行公式下划了一行线,皱眉道:
“如果使用韩立展开的话,弹球在稳定位置附近的性质又该是什么?这应该是一个级数,但划分起来却又是一个问题。”
徐云抬头看了他一眼,说道:
“牛顿先生,如果把稳定位置当成极小值来计算呢?
我们假设有一个数学上的迫近姿态,也就是......无限趋近于o?”
“无限趋近于o?”
不知为何,小牛的心中忽然冒出了一股有些古怪的情绪,就像是看到莉莎和别人挽着手从卧室里出来了一样。
不过很快他便将这股情绪抛之脑后,思索了一番道:
“那不就是割圆法的道理吗?”
割圆法,也就是计算圆周率的早期思路,上过小学人的应该都知道这种方法。
它其实暗示了这样一种思想:
两个量虽然有差距,但只要能使这个差距无限缩小,就可以认为两个量最终将会相等。
割圆法在这个时代已经算是一种被抛弃的数学工具,以徐云随口就能说出韩立展开的数学造诣,理论上不应该犯这种思想倒退的错误。
面对小牛的疑问,徐云轻轻摇了摇头,说道:
“牛顿先生,您所说的概念是一个非级数的变量,但如果更近一步,把它理解成一个级数变量呢?
甚至更近一步,把它视为脱实数框架的...常量呢?”
“趋近于o,级数变量?常量?”
听到徐云这番话,小牛整个人顿时愣住了。
无穷小概念,这是一个让无数大学摸鱼党挂在过树上的问题。
一般来说。
一个人从大学生到博士,对于无穷小的认识要经历三个阶段。
第一阶段跟第二阶段的无穷小都是变量,认识到第三阶段的时候,所有的无穷小都变成了常量,并且每个无穷小都对应着一个常数。
这些常数都不在实数的框架里面,都是由非标准分析模型的公理产生出来的。
简介关于系统又让我作妖天,地,人,妖,魔。孰是孰非,孰对孰错?为了活着穿梭在各大小说的檀妤熙,被系统强制作妖苍天谁能告诉我生了什么?为什么是我?终究是我不够惨吗?等等我是谁?是神仙?还是妖怪?...
我成了托雷基亚。这辈子我想做个好人!系统不,你不想!任务布引爆光之国雾崎???ΣД」」...
简介关于女扮男装重生后她只想当奸臣无cp(无男主)重生女扮男装权谋群像本小说是无cp的大女主!忠臣已逝,奸佞为尊!(非爽文!全文女主都是女扮男装!)前世女扮男装入朝为官,身居庙堂之高,为君为国为民,却被皇帝一杯毒酒赐死!死前方知自己不过是一颗被算计利用的棋子。注明(呃,作者没把女主当女人写!喜欢圣母救世主的就绕道吧!小说口味有点重!)...
(慢热型洪荒流,无系统,巫妖大战)这是一个巫的时代!他们移山填海,捉星拿月,建立了绵延万年的大夏,然而他们并不是此方天地的唯一主角。妖,鬼,怪,魔,等等都视他们为血肉食粮。穿越而来的巫玄机缘巧合被一老巫师收入门下开启了巫修之路,身怀僵尸之体的他能否终结这个混乱的时代?大夏巫修...
作为国家秘密武器的夜莺,在执行完任务回来时,被K2的成员报复,跌落悬崖致死后,灵魂穿越到一个历史上从没出现过的容耀王朝东陵国镇国大将军嫡女孟可欣身上,且看这从小就练习古武,中西医圣手的孟可欣,如何帮助亡国重生的皇子重建家园,让容耀王朝重现辉煌。...
gtp1tgtdivnetkquot1tgtahrefquotbeginquot1t立即阅读gta1t...